Difference between revisions of "PMID:355237"

From omp dev
Jump to: navigation, search
(New PMID: Page!)
 
(Fill PMID: Page!)
Line 1: Line 1:
 +
{{RightTOC}}
  
 +
<!--box uid=d41d8cd98f00b204e9800998ecf8427e.3085.W4f9f024c7cc12-->
 +
<!--
 +
******************************************************************************************
 +
*
 +
*  ** PLEASE DON'T EDIT THIS TABLE DIRECTLY.  Use the edit table link under the table. **
 +
*
 +
****************************************************************************************** -->
 +
{|  id="W4f9f024c7cc12"  class=" tableEdit PMID_info_table" 
 +
 +
|-
 +
!align=left  |Citation
 +
||
 +
'''Miller, CG and Schwartz, G'''  (1978) Peptidase-deficient mutants of Escherichia coli.''J. Bacteriol.'' '''135''':603-11
 +
|-
 +
!align=left  |Abstract
 +
||
 +
Mutant derivatives of Escherichia coli K-12 deficient in several peptidases have been obtained. Mutants lacking a naphthylamidase, peptidase N, were isolated by screening for colonies unable to hydrolyze L-alanine beta-naphthylamide. Other mutants were isolated using positive selections for resistance to valine peptides. Mutants lacking peptidase A, a broad-specificity aminopeptidase, were obtained by selection for resistance to L-valyl-L-leucine amide. Mutants lacking a dipeptidase, peptidase D, were isolated from a pepN pepA strain by selection for resistance to L-valyl-glycine. Starting with a pepN pepA pepD strain, selection for resistance to L-valyl-glycyl-glycine or several other valine peptides produced mutants deficient in another aminopeptidase, peptidase B. Mutants resistant to L-valyl-L-proline lack peptidase Q, an activity capable of rapid hydrolysis of X-proline dipeptides. Using these selection procedures, a strain (CM89) lacking five different peptidases has been isolated. Although still sensitive to valine, this strain is resistant to a variety of valine di- and tripeptides. The ability of this strain to use peptides as sources of amino acids is much more restricted than that of wild-type E. coli strains. Strains containing only one of the five peptidases missing in CM89 have been constructed by transduction. The peptide utilization profiles of these strains show that each of the five peptidases can function during growth in the catabolism of peptides.
 +
|-
 +
!align=left  |Links
 +
||
 +
[http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=355237 PubMed]
 +
 +
|-
 +
!align=left  |Keywords
 +
||
 +
Alleles; Aminopeptidases; Escherichia coli; Genes; Mutation; Peptide Hydrolases; Peptides; Transduction, Genetic
 +
 +
|- class="tableEdit_footer"
 +
|<span class="tableEdit_editLink plainlinks">[{{SERVER}}{{SCRIPTPATH}}?title=Special:TableEdit&id=d41d8cd98f00b204e9800998ecf8427e.3085.W4f9f024c7cc12&page=3085&pagename={{FULLPAGENAMEE}}&type=1&template=PMID_info_table edit table]</span> ||
 +
|}
 +
<!--box uid=d41d8cd98f00b204e9800998ecf8427e.3085.W4f9f024c7cc12-->
 +
 +
==Main Points of the Paper ==
 +
{{LitSignificance}}
 +
 +
== Materials and Methods Used ==
 +
{{LitMaterials}}
 +
 +
==Phenotype Annotations==
 +
{{AnnotationTableHelp}}
 +
<protect><!--box uid=d41d8cd98f00b204e9800998ecf8427e.3085.A4f9f024c89ba9-->
 +
<!--
 +
******************************************************************************************
 +
*
 +
*  ** PLEASE DON'T EDIT THIS TABLE DIRECTLY.  Use the edit table link under the table. **
 +
*
 +
****************************************************************************************** -->
 +
{|  id="A4f9f024c89ba9"  class=" tableEdit Phenotype_Table_2" 
 +
|-
 +
!|Phenotype of!!Taxon Information!!Genotype Information (if known)!!Condition Information!!OMP ID!!OMP Term Name!!ECO ID!!ECO Term Name!!Notes!!Status
 +
 +
|- class="tableEdit_footer"
 +
|<span class="tableEdit_editLink plainlinks">[{{SERVER}}{{SCRIPTPATH}}?title=Special:TableEdit&id=d41d8cd98f00b204e9800998ecf8427e.3085.A4f9f024c89ba9&page=3085&pagename={{FULLPAGENAMEE}}&type=0&template=Phenotype_Table_2 edit table]</span> || || || || || || || || ||
 +
|}
 +
<!--box uid=d41d8cd98f00b204e9800998ecf8427e.3085.A4f9f024c89ba9--></protect>
 +
 +
==Notes==
 +
 +
==References==
 +
{{RefHelp}}
 +
<references/>
 +
 +
 +
[[Category:Publication]]

Revision as of 16:21, 30 April 2012

Citation

Miller, CG and Schwartz, G (1978) Peptidase-deficient mutants of Escherichia coli.J. Bacteriol. 135:603-11

Abstract

Mutant derivatives of Escherichia coli K-12 deficient in several peptidases have been obtained. Mutants lacking a naphthylamidase, peptidase N, were isolated by screening for colonies unable to hydrolyze L-alanine beta-naphthylamide. Other mutants were isolated using positive selections for resistance to valine peptides. Mutants lacking peptidase A, a broad-specificity aminopeptidase, were obtained by selection for resistance to L-valyl-L-leucine amide. Mutants lacking a dipeptidase, peptidase D, were isolated from a pepN pepA strain by selection for resistance to L-valyl-glycine. Starting with a pepN pepA pepD strain, selection for resistance to L-valyl-glycyl-glycine or several other valine peptides produced mutants deficient in another aminopeptidase, peptidase B. Mutants resistant to L-valyl-L-proline lack peptidase Q, an activity capable of rapid hydrolysis of X-proline dipeptides. Using these selection procedures, a strain (CM89) lacking five different peptidases has been isolated. Although still sensitive to valine, this strain is resistant to a variety of valine di- and tripeptides. The ability of this strain to use peptides as sources of amino acids is much more restricted than that of wild-type E. coli strains. Strains containing only one of the five peptidases missing in CM89 have been constructed by transduction. The peptide utilization profiles of these strains show that each of the five peptidases can function during growth in the catabolism of peptides.

Links

PubMed

Keywords

Alleles; Aminopeptidases; Escherichia coli; Genes; Mutation; Peptide Hydrolases; Peptides; Transduction, Genetic

Main Points of the Paper

Please summarize the main points of the paper.

Materials and Methods Used

Please list the materials and methods used in this paper (strains, plasmids, antibodies, etc).

Phenotype Annotations

See Help:AnnotationTable for details on how to edit this table.
<protect>

Phenotype of Taxon Information Genotype Information (if known) Condition Information OMP ID OMP Term Name ECO ID ECO Term Name Notes Status

</protect>

Notes

References

See Help:References for how to manage references in omp dev.