Difference between revisions of "PMID:15916962"

From omp dev
Jump to: navigation, search
(New PMID: Page!)
 
(Fill PMID: Page!)
Line 1: Line 1:
 +
{{RightTOC}}
  
 +
<!--box uid=2ccfb3c7bf1208312f02a69e64bfd9e0.829.L4d9c90148d8d0-->
 +
<!--
 +
******************************************************************************************
 +
*
 +
*  ** PLEASE DON'T EDIT THIS TABLE DIRECTLY.  Use the edit table link under the table. **
 +
*
 +
****************************************************************************************** -->
 +
{|  id="L4d9c90148d8d0"  class=" tableEdit PMID_info_table" 
 +
 +
|-
 +
!align=left  |Citation
 +
||
 +
'''Bernhardt, TG and de Boer, PA'''  (2005) SlmA, a nucleoid-associated, FtsZ binding protein required for blocking septal ring assembly over Chromosomes in E. coli.''Mol. Cell'' '''18''':555-64
 +
|-
 +
!align=left  |Abstract
 +
||
 +
Cell division in Escherichia coli begins with assembly of the tubulin-like FtsZ protein into a ring structure just underneath the cell membrane. Spatial control over Z ring assembly is achieved by two partially redundant negative regulatory systems, the Min system and nucleoid occlusion (NO), which cooperate to position the division site at midcell. In contrast to the well-studied Min system, almost nothing is known about how Z ring assembly is blocked in the vicinity of nucleoids to effect NO. Reasoning that Min function might become essential in cells impaired for NO, we screened for mutations synthetically lethal with a defective Min system (slm mutants). By using this approach, we identified SlmA (Ttk) as the first NO factor in E. coli. Our combined genetic, cytological, and biochemical results suggest that SlmA is a DNA-associated division inhibitor that is directly involved in preventing Z ring assembly on portions of the membrane surrounding the nucleoid.
 +
|-
 +
!align=left  |Links
 +
||
 +
[http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=15916962 PubMed]
 +
Online version:[http://dx.doi.org/10.1016/j.molcel.2005.04.012 10.1016/j.molcel.2005.04.012]
 +
|-
 +
!align=left  |Keywords
 +
||
 +
Carrier Proteins; Cell Division; Cell Membrane; Chromosomes, Bacterial; DNA Mutational Analysis; Escherichia coli; Escherichia coli Proteins; Recombinant Fusion Proteins
 +
 +
|- class="tableEdit_footer"
 +
|<span class="tableEdit_editLink plainlinks">[{{SERVER}}{{SCRIPTPATH}}?title=Special:TableEdit&id=2ccfb3c7bf1208312f02a69e64bfd9e0.829.L4d9c90148d8d0&page=829&pagename={{FULLPAGENAMEE}}&type=1&template=PMID_info_table edit table]</span> ||
 +
|}
 +
<!--box uid=2ccfb3c7bf1208312f02a69e64bfd9e0.829.L4d9c90148d8d0-->
 +
 +
==Main Points of the Paper ==
 +
{{LitSignificance}}
 +
 +
== Materials and Methods Used ==
 +
{{LitMaterials}}
 +
 +
==Phenotype Annotations==
 +
{{AnnotationTableHelp}}
 +
<protect><!--box uid=2ccfb3c7bf1208312f02a69e64bfd9e0.829.Y4d9c9014a98f7-->
 +
<!--
 +
******************************************************************************************
 +
*
 +
*  ** PLEASE DON'T EDIT THIS TABLE DIRECTLY.  Use the edit table link under the table. **
 +
*
 +
****************************************************************************************** -->
 +
{|  id="Y4d9c9014a98f7"  class=" tableEdit PMID_Phenotype_table" 
 +
|-
 +
!|Species!!Taxon ID!!Strain!!Gene (if known)!!OMP!!Phenotype!!Details!!Evidence!!Notes
 +
 +
|- class="tableEdit_footer"
 +
|<span class="tableEdit_editLink plainlinks">[{{SERVER}}{{SCRIPTPATH}}?title=Special:TableEdit&id=2ccfb3c7bf1208312f02a69e64bfd9e0.829.Y4d9c9014a98f7&page=829&pagename={{FULLPAGENAMEE}}&type=0&template=PMID_Phenotype_table edit table]</span> || || || || || || || ||
 +
|}
 +
<!--box uid=2ccfb3c7bf1208312f02a69e64bfd9e0.829.Y4d9c9014a98f7--></protect>
 +
 +
==Notes==
 +
 +
==References==
 +
{{RefHelp}}
 +
<references/>

Revision as of 11:08, 6 April 2011

Citation

Bernhardt, TG and de Boer, PA (2005) SlmA, a nucleoid-associated, FtsZ binding protein required for blocking septal ring assembly over Chromosomes in E. coli.Mol. Cell 18:555-64

Abstract

Cell division in Escherichia coli begins with assembly of the tubulin-like FtsZ protein into a ring structure just underneath the cell membrane. Spatial control over Z ring assembly is achieved by two partially redundant negative regulatory systems, the Min system and nucleoid occlusion (NO), which cooperate to position the division site at midcell. In contrast to the well-studied Min system, almost nothing is known about how Z ring assembly is blocked in the vicinity of nucleoids to effect NO. Reasoning that Min function might become essential in cells impaired for NO, we screened for mutations synthetically lethal with a defective Min system (slm mutants). By using this approach, we identified SlmA (Ttk) as the first NO factor in E. coli. Our combined genetic, cytological, and biochemical results suggest that SlmA is a DNA-associated division inhibitor that is directly involved in preventing Z ring assembly on portions of the membrane surrounding the nucleoid.

Links

PubMed Online version:10.1016/j.molcel.2005.04.012

Keywords

Carrier Proteins; Cell Division; Cell Membrane; Chromosomes, Bacterial; DNA Mutational Analysis; Escherichia coli; Escherichia coli Proteins; Recombinant Fusion Proteins

Main Points of the Paper

Please summarize the main points of the paper.

Materials and Methods Used

Please list the materials and methods used in this paper (strains, plasmids, antibodies, etc).

Phenotype Annotations

See Help:AnnotationTable for details on how to edit this table.
<protect>

Species Taxon ID Strain Gene (if known) OMP Phenotype Details Evidence Notes

</protect>

Notes

References

See Help:References for how to manage references in omp dev.