Difference between revisions of "PMID:9405611"
(New PMID: Page!) |
(Fill PMID: Page!) |
||
Line 1: | Line 1: | ||
+ | {{RightTOC}} | ||
+ | <!--box uid=d41d8cd98f00b204e9800998ecf8427e.3610.H512fdd2f2faf7--> | ||
+ | <!-- | ||
+ | ****************************************************************************************** | ||
+ | * | ||
+ | * ** PLEASE DON'T EDIT THIS TABLE DIRECTLY. Use the edit table link under the table. ** | ||
+ | * | ||
+ | ****************************************************************************************** --> | ||
+ | {| id="H512fdd2f2faf7" class=" tableEdit PMID_info_table" | ||
+ | |||
+ | |- | ||
+ | !align=left |Citation | ||
+ | || | ||
+ | '''Rensing, C , Mitra, B and Rosen, BP ''' (1997) The zntA gene of Escherichia coli encodes a Zn(II)-translocating P-type ATPase. ''Proc. Natl. Acad. Sci. U.S.A.'' '''94''':14326-31 | ||
+ | |- | ||
+ | !align=left |Abstract | ||
+ | || | ||
+ | The first Zn(II)-translocating P-type ATPase has been identified as the product of o732, a potential gene identified in the sequencing of the Escherichia coli genome. This gene, termed zntA, was disrupted by insertion of a kanamycin gene through homologous recombination. The mutant strain exhibited hypersensitivity to zinc and cadmium salts but not salts of other metals, suggesting a role in zinc homeostasis in E. coli. Everted membrane vesicles from a wild-type strain accumulated 65Zn(II) and 109Cd(II) by using ATP as an energy source. Transport was sensitive to vanadate, an inhibitor of P-type ATPases. Membrane vesicles from the zntA::kan strain did not accumulate those metal ions. Both the sensitive phenotype and transport defect of the mutant were complemented by expression of zntA on a plasmid. | ||
+ | |- | ||
+ | !align=left |Links | ||
+ | || | ||
+ | [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=9405611 PubMed] [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC24962 PMC24962] | ||
+ | |||
+ | |- | ||
+ | !align=left |Keywords | ||
+ | || | ||
+ | Adenosine Triphosphatases/genetics; Adenosine Triphosphatases/metabolism; Amino Acid Sequence; Bacterial Proteins/genetics; Cloning, Molecular; Escherichia coli/genetics; Escherichia coli/metabolism; Genes, Bacterial; Molecular Sequence Data; Sequence Alignment; Zinc/metabolism | ||
+ | |||
+ | |- class="tableEdit_footer" | ||
+ | |<span class="tableEdit_editLink plainlinks">[{{SERVER}}{{SCRIPTPATH}}?title=Special:TableEdit&id=d41d8cd98f00b204e9800998ecf8427e.3610.H512fdd2f2faf7&page=3610&pagename={{FULLPAGENAMEE}}&type=1&template=PMID_info_table edit table]</span> || | ||
+ | |} | ||
+ | <!--box uid=d41d8cd98f00b204e9800998ecf8427e.3610.H512fdd2f2faf7--> | ||
+ | |||
+ | ==Main Points of the Paper == | ||
+ | {{LitSignificance}} | ||
+ | |||
+ | == Materials and Methods Used == | ||
+ | {{LitMaterials}} | ||
+ | |||
+ | ==Phenotype Annotations== | ||
+ | {{AnnotationTableHelp}} | ||
+ | <protect><!--box uid=d41d8cd98f00b204e9800998ecf8427e.3610.U512fdd2f6bc84--> | ||
+ | <!-- | ||
+ | ****************************************************************************************** | ||
+ | * | ||
+ | * ** PLEASE DON'T EDIT THIS TABLE DIRECTLY. Use the edit table link under the table. ** | ||
+ | * | ||
+ | ****************************************************************************************** --> | ||
+ | {| border="2" cellpadding="4" cellspacing="0" style="margin: 1em 1em 1em 0; border: 1px #aaa solid; border-collapse: collapse;" id="U512fdd2f6bc84" class=" tableEdit Phenotype_Table_2" | ||
+ | |- | ||
+ | !|Phenotype of!!Taxon Information!!Genotype Information (if known)!!Condition Information!!OMP ID!!OMP Term Name!!ECO ID!!ECO Term Name!!Notes!!Status | ||
+ | |||
+ | |- class="tableEdit_footer" | ||
+ | |<span class="tableEdit_editLink plainlinks">[{{SERVER}}{{SCRIPTPATH}}?title=Special:TableEdit&id=d41d8cd98f00b204e9800998ecf8427e.3610.U512fdd2f6bc84&page=3610&pagename={{FULLPAGENAMEE}}&type=0&template=Phenotype_Table_2 edit table]</span> || || || || || || || || || | ||
+ | |} | ||
+ | <!--box uid=d41d8cd98f00b204e9800998ecf8427e.3610.U512fdd2f6bc84--></protect> | ||
+ | |||
+ | ==Notes== | ||
+ | |||
+ | ==References== | ||
+ | {{RefHelp}} | ||
+ | <references/> | ||
+ | |||
+ | |||
+ | [[Category:Publication]] |
Revision as of 17:41, 28 February 2013
Citation |
Rensing, C , Mitra, B and Rosen, BP (1997) The zntA gene of Escherichia coli encodes a Zn(II)-translocating P-type ATPase. Proc. Natl. Acad. Sci. U.S.A. 94:14326-31 |
---|---|
Abstract |
The first Zn(II)-translocating P-type ATPase has been identified as the product of o732, a potential gene identified in the sequencing of the Escherichia coli genome. This gene, termed zntA, was disrupted by insertion of a kanamycin gene through homologous recombination. The mutant strain exhibited hypersensitivity to zinc and cadmium salts but not salts of other metals, suggesting a role in zinc homeostasis in E. coli. Everted membrane vesicles from a wild-type strain accumulated 65Zn(II) and 109Cd(II) by using ATP as an energy source. Transport was sensitive to vanadate, an inhibitor of P-type ATPases. Membrane vesicles from the zntA::kan strain did not accumulate those metal ions. Both the sensitive phenotype and transport defect of the mutant were complemented by expression of zntA on a plasmid. |
Links | |
Keywords |
Adenosine Triphosphatases/genetics; Adenosine Triphosphatases/metabolism; Amino Acid Sequence; Bacterial Proteins/genetics; Cloning, Molecular; Escherichia coli/genetics; Escherichia coli/metabolism; Genes, Bacterial; Molecular Sequence Data; Sequence Alignment; Zinc/metabolism |
edit table |
Main Points of the Paper
Please summarize the main points of the paper.
Materials and Methods Used
Please list the materials and methods used in this paper (strains, plasmids, antibodies, etc).
Phenotype Annotations
See Help:AnnotationTable for details on how to edit this table.
<protect>
Phenotype of | Taxon Information | Genotype Information (if known) | Condition Information | OMP ID | OMP Term Name | ECO ID | ECO Term Name | Notes | Status |
---|---|---|---|---|---|---|---|---|---|
edit table |
</protect>
Notes
References
See Help:References for how to manage references in omp dev.