Difference between revisions of "PMID:21070029"
(New PMID: Page!) |
(Fill PMID: Page!) |
||
Line 1: | Line 1: | ||
+ | {{RightTOC}} | ||
+ | <!--box uid=d41d8cd98f00b204e9800998ecf8427e.3408.K505669c07a645--> | ||
+ | <!-- | ||
+ | ****************************************************************************************** | ||
+ | * | ||
+ | * ** PLEASE DON'T EDIT THIS TABLE DIRECTLY. Use the edit table link under the table. ** | ||
+ | * | ||
+ | ****************************************************************************************** --> | ||
+ | {| id="K505669c07a645" class=" tableEdit PMID_info_table" | ||
+ | |||
+ | |- | ||
+ | !align=left |Citation | ||
+ | || | ||
+ | '''Huang, YF , Wu, DY , Wang, A , Ren, B , Rondinini, S , Tian, ZQ and Amatore, C ''' (2010) Bridging the Gap between Electrochemical and Organometallic Activation: Benzyl Chloride Reduction at Silver Cathodes. ''J. Am. Chem. Soc.'' '''''' | ||
+ | |- | ||
+ | !align=left |Abstract | ||
+ | || | ||
+ | Integration of voltammetry, surface-enhanced Raman spectroscopy (SERS), and density functional theory (DFT) has allowed unraveling the mechanistic origin of the exceptional electrocatalytic properties of silver cathodes during the reduction of benzyl chloride. At inert electrodes the initial reduction proceeds through a concerted direct electron transfer yielding a benzyl radical as the first intermediate. Conversely, at silver electrodes it involves an uphill preadsorption of benzyl chloride onto the silver cathode. Reduction of this adduct affords a species tentatively described as a distorted benzyl radical anion stabilized by the silver surface. This transient species rapidly evolves to yield ultimately a benzyl radical bound onto the silver surface, the latter being reduced into a benzyl-silver anionic adduct which eventually dissociates into a free benzyl anion at more negative potentials. Within this framework, the exceptional electrocatalytic properties of silver cathodes stem from the fact that they drastically modify the mechanism of the 2e-reduction pathway through a direct consequence of the electrophilicity of silver cathode surfaces toward organic halides. This mechanism contrasts drastically with any of those tentatively invoked previously, and bridges classical electroreduction mechanisms and oxidative additions similar to those occurring during organometallic homogeneous activation of organic halides by low-valent transition-metal complexes. | ||
+ | |- | ||
+ | !align=left |Links | ||
+ | || | ||
+ | [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=21070029 PubMed] | ||
+ | Online version:[http://dx.doi.org/10.1021/ja106049c 10.1021/ja106049c] | ||
+ | |- | ||
+ | !align=left |Keywords | ||
+ | || | ||
+ | |||
+ | |||
+ | |- class="tableEdit_footer" | ||
+ | |<span class="tableEdit_editLink plainlinks">[{{SERVER}}{{SCRIPTPATH}}?title=Special:TableEdit&id=d41d8cd98f00b204e9800998ecf8427e.3408.K505669c07a645&page=3408&pagename={{FULLPAGENAMEE}}&type=1&template=PMID_info_table edit table]</span> || | ||
+ | |} | ||
+ | <!--box uid=d41d8cd98f00b204e9800998ecf8427e.3408.K505669c07a645--> | ||
+ | |||
+ | ==Main Points of the Paper == | ||
+ | {{LitSignificance}} | ||
+ | |||
+ | == Materials and Methods Used == | ||
+ | {{LitMaterials}} | ||
+ | |||
+ | ==Phenotype Annotations== | ||
+ | {{AnnotationTableHelp}} | ||
+ | <protect><!--box uid=d41d8cd98f00b204e9800998ecf8427e.3408.E505669c085dbb--> | ||
+ | <!-- | ||
+ | ****************************************************************************************** | ||
+ | * | ||
+ | * ** PLEASE DON'T EDIT THIS TABLE DIRECTLY. Use the edit table link under the table. ** | ||
+ | * | ||
+ | ****************************************************************************************** --> | ||
+ | {| id="E505669c085dbb" class=" tableEdit Phenotype_Table_2" | ||
+ | |- | ||
+ | !|Phenotype of!!Taxon Information!!Genotype Information (if known)!!Condition Information!!OMP ID!!OMP Term Name!!ECO ID!!ECO Term Name!!Notes!!Status | ||
+ | |||
+ | |- class="tableEdit_footer" | ||
+ | |<span class="tableEdit_editLink plainlinks">[{{SERVER}}{{SCRIPTPATH}}?title=Special:TableEdit&id=d41d8cd98f00b204e9800998ecf8427e.3408.E505669c085dbb&page=3408&pagename={{FULLPAGENAMEE}}&type=0&template=Phenotype_Table_2 edit table]</span> || || || || || || || || || | ||
+ | |} | ||
+ | <!--box uid=d41d8cd98f00b204e9800998ecf8427e.3408.E505669c085dbb--></protect> | ||
+ | |||
+ | ==Notes== | ||
+ | |||
+ | ==References== | ||
+ | {{RefHelp}} | ||
+ | <references/> | ||
+ | |||
+ | |||
+ | [[Category:Publication]] |
Latest revision as of 19:07, 16 September 2012
Citation |
'Huang, YF , Wu, DY , Wang, A , Ren, B , Rondinini, S , Tian, ZQ and Amatore, C (2010) Bridging the Gap between Electrochemical and Organometallic Activation: Benzyl Chloride Reduction at Silver Cathodes. J. Am. Chem. Soc. ' |
---|---|
Abstract |
Integration of voltammetry, surface-enhanced Raman spectroscopy (SERS), and density functional theory (DFT) has allowed unraveling the mechanistic origin of the exceptional electrocatalytic properties of silver cathodes during the reduction of benzyl chloride. At inert electrodes the initial reduction proceeds through a concerted direct electron transfer yielding a benzyl radical as the first intermediate. Conversely, at silver electrodes it involves an uphill preadsorption of benzyl chloride onto the silver cathode. Reduction of this adduct affords a species tentatively described as a distorted benzyl radical anion stabilized by the silver surface. This transient species rapidly evolves to yield ultimately a benzyl radical bound onto the silver surface, the latter being reduced into a benzyl-silver anionic adduct which eventually dissociates into a free benzyl anion at more negative potentials. Within this framework, the exceptional electrocatalytic properties of silver cathodes stem from the fact that they drastically modify the mechanism of the 2e-reduction pathway through a direct consequence of the electrophilicity of silver cathode surfaces toward organic halides. This mechanism contrasts drastically with any of those tentatively invoked previously, and bridges classical electroreduction mechanisms and oxidative additions similar to those occurring during organometallic homogeneous activation of organic halides by low-valent transition-metal complexes. |
Links |
PubMed Online version:10.1021/ja106049c |
Keywords |
|
edit table |
Main Points of the Paper
Please summarize the main points of the paper.
Materials and Methods Used
Please list the materials and methods used in this paper (strains, plasmids, antibodies, etc).
Phenotype Annotations
See Help:AnnotationTable for details on how to edit this table.
<protect>
Phenotype of | Taxon Information | Genotype Information (if known) | Condition Information | OMP ID | OMP Term Name | ECO ID | ECO Term Name | Notes | Status |
---|---|---|---|---|---|---|---|---|---|
edit table |
</protect>
Notes
References
See Help:References for how to manage references in omp dev.