Difference between revisions of "PMID:16023670"
(New PMID: Page!) |
(Fill PMID: Page!) |
||
Line 1: | Line 1: | ||
+ | {{RightTOC}} | ||
+ | <!--box uid=d41d8cd98f00b204e9800998ecf8427e.3497.L50577014c46d0--> | ||
+ | <!-- | ||
+ | ****************************************************************************************** | ||
+ | * | ||
+ | * ** PLEASE DON'T EDIT THIS TABLE DIRECTLY. Use the edit table link under the table. ** | ||
+ | * | ||
+ | ****************************************************************************************** --> | ||
+ | {| id="L50577014c46d0" class=" tableEdit PMID_info_table" | ||
+ | |||
+ | |- | ||
+ | !align=left |Citation | ||
+ | || | ||
+ | '''Corbett, KD , Schoeffler, AJ , Thomsen, ND and Berger, JM ''' (2005) The structural basis for substrate specificity in DNA topoisomerase IV. ''J. Mol. Biol.'' '''351''':545-61 | ||
+ | |- | ||
+ | !align=left |Abstract | ||
+ | || | ||
+ | Most bacteria possess two type IIA topoisomerases, DNA gyrase and topo IV, that together help manage chromosome integrity and topology. Gyrase primarily introduces negative supercoils into DNA, an activity mediated by the C-terminal domain of its DNA binding subunit (GyrA). Although closely related to gyrase, topo IV preferentially decatenates DNA and relaxes positive supercoils. Here we report the structure of the full-length Escherichia coli ParC dimer at 3.0 A resolution. The N-terminal DNA binding region of ParC is highly similar to that of GyrA, but the ParC dimer adopts a markedly different conformation. The C-terminal domain (CTD) of ParC is revealed to be a degenerate form of the homologous GyrA CTD, and is anchored to the top of the N-terminal domains in a configuration different from that thought to occur in gyrase. Biochemical assays show that the ParC CTD controls the substrate specificity of topo IV, likely by capturing DNA segments of certain crossover geometries. This work delineates strong mechanistic parallels between topo IV and gyrase, while explaining how structural differences between the two enzyme families have led to distinct activity profiles. These findings in turn explain how the structures and functions of bacterial type IIA topoisomerases have evolved to meet specific needs of different bacterial families for the control of chromosome superstructure. | ||
+ | |- | ||
+ | !align=left |Links | ||
+ | || | ||
+ | [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=16023670 PubMed] | ||
+ | Online version:[http://dx.doi.org/10.1016/j.jmb.2005.06.029 10.1016/j.jmb.2005.06.029] | ||
+ | |- | ||
+ | !align=left |Keywords | ||
+ | || | ||
+ | DNA Topoisomerase IV/chemistry; DNA Topoisomerase IV/metabolism; Models, Molecular; Protein Conformation; Substrate Specificity | ||
+ | |||
+ | |- class="tableEdit_footer" | ||
+ | |<span class="tableEdit_editLink plainlinks">[{{SERVER}}{{SCRIPTPATH}}?title=Special:TableEdit&id=d41d8cd98f00b204e9800998ecf8427e.3497.L50577014c46d0&page=3497&pagename={{FULLPAGENAMEE}}&type=1&template=PMID_info_table edit table]</span> || | ||
+ | |} | ||
+ | <!--box uid=d41d8cd98f00b204e9800998ecf8427e.3497.L50577014c46d0--> | ||
+ | |||
+ | ==Main Points of the Paper == | ||
+ | {{LitSignificance}} | ||
+ | |||
+ | == Materials and Methods Used == | ||
+ | {{LitMaterials}} | ||
+ | |||
+ | ==Phenotype Annotations== | ||
+ | {{AnnotationTableHelp}} | ||
+ | <protect><!--box uid=d41d8cd98f00b204e9800998ecf8427e.3497.Z50577014cbd36--> | ||
+ | <!-- | ||
+ | ****************************************************************************************** | ||
+ | * | ||
+ | * ** PLEASE DON'T EDIT THIS TABLE DIRECTLY. Use the edit table link under the table. ** | ||
+ | * | ||
+ | ****************************************************************************************** --> | ||
+ | {| id="Z50577014cbd36" class=" tableEdit Phenotype_Table_2" | ||
+ | |- | ||
+ | !|Phenotype of!!Taxon Information!!Genotype Information (if known)!!Condition Information!!OMP ID!!OMP Term Name!!ECO ID!!ECO Term Name!!Notes!!Status | ||
+ | |||
+ | |- class="tableEdit_footer" | ||
+ | |<span class="tableEdit_editLink plainlinks">[{{SERVER}}{{SCRIPTPATH}}?title=Special:TableEdit&id=d41d8cd98f00b204e9800998ecf8427e.3497.Z50577014cbd36&page=3497&pagename={{FULLPAGENAMEE}}&type=0&template=Phenotype_Table_2 edit table]</span> || || || || || || || || || | ||
+ | |} | ||
+ | <!--box uid=d41d8cd98f00b204e9800998ecf8427e.3497.Z50577014cbd36--></protect> | ||
+ | |||
+ | ==Notes== | ||
+ | |||
+ | ==References== | ||
+ | {{RefHelp}} | ||
+ | <references/> | ||
+ | |||
+ | |||
+ | [[Category:Publication]] |
Revision as of 13:46, 17 September 2012
Citation |
Corbett, KD , Schoeffler, AJ , Thomsen, ND and Berger, JM (2005) The structural basis for substrate specificity in DNA topoisomerase IV. J. Mol. Biol. 351:545-61 |
---|---|
Abstract |
Most bacteria possess two type IIA topoisomerases, DNA gyrase and topo IV, that together help manage chromosome integrity and topology. Gyrase primarily introduces negative supercoils into DNA, an activity mediated by the C-terminal domain of its DNA binding subunit (GyrA). Although closely related to gyrase, topo IV preferentially decatenates DNA and relaxes positive supercoils. Here we report the structure of the full-length Escherichia coli ParC dimer at 3.0 A resolution. The N-terminal DNA binding region of ParC is highly similar to that of GyrA, but the ParC dimer adopts a markedly different conformation. The C-terminal domain (CTD) of ParC is revealed to be a degenerate form of the homologous GyrA CTD, and is anchored to the top of the N-terminal domains in a configuration different from that thought to occur in gyrase. Biochemical assays show that the ParC CTD controls the substrate specificity of topo IV, likely by capturing DNA segments of certain crossover geometries. This work delineates strong mechanistic parallels between topo IV and gyrase, while explaining how structural differences between the two enzyme families have led to distinct activity profiles. These findings in turn explain how the structures and functions of bacterial type IIA topoisomerases have evolved to meet specific needs of different bacterial families for the control of chromosome superstructure. |
Links |
PubMed Online version:10.1016/j.jmb.2005.06.029 |
Keywords |
DNA Topoisomerase IV/chemistry; DNA Topoisomerase IV/metabolism; Models, Molecular; Protein Conformation; Substrate Specificity |
edit table |
Main Points of the Paper
Please summarize the main points of the paper.
Materials and Methods Used
Please list the materials and methods used in this paper (strains, plasmids, antibodies, etc).
Phenotype Annotations
See Help:AnnotationTable for details on how to edit this table.
<protect>
Phenotype of | Taxon Information | Genotype Information (if known) | Condition Information | OMP ID | OMP Term Name | ECO ID | ECO Term Name | Notes | Status |
---|---|---|---|---|---|---|---|---|---|
edit table |
</protect>
Notes
References
See Help:References for how to manage references in omp dev.