Difference between revisions of "PMID:9658012"

From omp dev
Jump to: navigation, search
(New PMID: Page!)
 
(Fill PMID: Page!)
Line 1: Line 1:
 +
{{RightTOC}}
  
 +
<!--box uid=d41d8cd98f00b204e9800998ecf8427e.3609.E512d16261c49c-->
 +
<!--
 +
******************************************************************************************
 +
*
 +
*  ** PLEASE DON'T EDIT THIS TABLE DIRECTLY.  Use the edit table link under the table. **
 +
*
 +
****************************************************************************************** -->
 +
{|  id="E512d16261c49c"  class=" tableEdit PMID_info_table" 
 +
 +
|-
 +
!align=left  |Citation
 +
||
 +
'''Ukai, H , Matsuzawa, H , Ito, K , Yamada, M  and Nishimura, A '''  (1998) ftsE(Ts) affects translocation of K+-pump proteins into the cytoplasmic membrane of Escherichia coli. ''J. Bacteriol.'' '''180''':3663-70
 +
|-
 +
!align=left  |Abstract
 +
||
 +
The ftsE(Ts) mutation of Escherichia coli causes defects in cell division and cell growth. We expressed alkaline phosphatase (PhoA) fusion proteins of KdpA, Kup, and TrkH, all of which proved functional in vivo as K+ ion pumps, in the mutant cells. During growth at 41 degrees C, these proteins were progressively lost from the membrane fraction. The reduction in the abundance of these proteins inversely correlated with cell growth, but the preformed proteins in the membrane were stable at 41 degrees C, indicating that the molecules synthesized at the permissive temperature were diluted in a growth-dependent manner at a high temperature. Pulse-chase experiments showed that KdpA-PhoA was synthesized, but the synthesized protein did not translocate into the membrane of the ftsE(Ts) cells at 41 degrees C and degraded very rapidly. The loss of KdpA-PhoA from the membrane fractions of ftsE(Ts) cells was suppressed by a multicopy plasmid carrying the ftsE+ gene. While cell growth stopped when the abundance of these proteins decreased 15-fold, the addition of a high concentration of K+ ions specifically alleviated the growth defect of ftsE(Ts) cells but not cell division, and the cells elongated more than 100-fold. We conclude that one of the causes of growth cessation in the ftsE(Ts) mutants is a defect in the translocation of K+-pump proteins into the cytoplasmic membrane.
 +
|-
 +
!align=left  |Links
 +
||
 +
[http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=9658012 PubMed] [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC107337 PMC107337]
 +
 +
|-
 +
!align=left  |Keywords
 +
||
 +
ATP-Binding Cassette Transporters; Bacterial Proteins/metabolism; Cell Division/drug effects; Cell Membrane/metabolism; Cell Membrane/physiology; Cystic Fibrosis Transmembrane Conductance Regulator/metabolism; Escherichia coli/growth & development; Escherichia coli/metabolism; Escherichia coli Proteins; Potassium Chloride/pharmacology; Sodium-Potassium-Exchanging ATPase/metabolism
 +
 +
|- class="tableEdit_footer"
 +
|<span class="tableEdit_editLink plainlinks">[{{SERVER}}{{SCRIPTPATH}}?title=Special:TableEdit&id=d41d8cd98f00b204e9800998ecf8427e.3609.E512d16261c49c&page=3609&pagename={{FULLPAGENAMEE}}&type=1&template=PMID_info_table edit table]</span> ||
 +
|}
 +
<!--box uid=d41d8cd98f00b204e9800998ecf8427e.3609.E512d16261c49c-->
 +
 +
==Main Points of the Paper ==
 +
{{LitSignificance}}
 +
 +
== Materials and Methods Used ==
 +
{{LitMaterials}}
 +
 +
==Phenotype Annotations==
 +
{{AnnotationTableHelp}}
 +
<protect><!--box uid=d41d8cd98f00b204e9800998ecf8427e.3609.G512d16265714b-->
 +
<!--
 +
******************************************************************************************
 +
*
 +
*  ** PLEASE DON'T EDIT THIS TABLE DIRECTLY.  Use the edit table link under the table. **
 +
*
 +
****************************************************************************************** -->
 +
{| border="2" cellpadding="4" cellspacing="0" style="margin: 1em 1em 1em 0; border: 1px #aaa solid; border-collapse: collapse;"  id="G512d16265714b"  class=" tableEdit Phenotype_Table_2" 
 +
|-
 +
!|Phenotype of!!Taxon Information!!Genotype Information (if known)!!Condition Information!!OMP ID!!OMP Term Name!!ECO ID!!ECO Term Name!!Notes!!Status
 +
 +
|- class="tableEdit_footer"
 +
|<span class="tableEdit_editLink plainlinks">[{{SERVER}}{{SCRIPTPATH}}?title=Special:TableEdit&id=d41d8cd98f00b204e9800998ecf8427e.3609.G512d16265714b&page=3609&pagename={{FULLPAGENAMEE}}&type=0&template=Phenotype_Table_2 edit table]</span> || || || || || || || || ||
 +
|}
 +
<!--box uid=d41d8cd98f00b204e9800998ecf8427e.3609.G512d16265714b--></protect>
 +
 +
==Notes==
 +
 +
==References==
 +
{{RefHelp}}
 +
<references/>
 +
 +
 +
[[Category:Publication]]

Revision as of 15:08, 26 February 2013

Citation

Ukai, H , Matsuzawa, H , Ito, K , Yamada, M and Nishimura, A (1998) ftsE(Ts) affects translocation of K+-pump proteins into the cytoplasmic membrane of Escherichia coli. J. Bacteriol. 180:3663-70

Abstract

The ftsE(Ts) mutation of Escherichia coli causes defects in cell division and cell growth. We expressed alkaline phosphatase (PhoA) fusion proteins of KdpA, Kup, and TrkH, all of which proved functional in vivo as K+ ion pumps, in the mutant cells. During growth at 41 degrees C, these proteins were progressively lost from the membrane fraction. The reduction in the abundance of these proteins inversely correlated with cell growth, but the preformed proteins in the membrane were stable at 41 degrees C, indicating that the molecules synthesized at the permissive temperature were diluted in a growth-dependent manner at a high temperature. Pulse-chase experiments showed that KdpA-PhoA was synthesized, but the synthesized protein did not translocate into the membrane of the ftsE(Ts) cells at 41 degrees C and degraded very rapidly. The loss of KdpA-PhoA from the membrane fractions of ftsE(Ts) cells was suppressed by a multicopy plasmid carrying the ftsE+ gene. While cell growth stopped when the abundance of these proteins decreased 15-fold, the addition of a high concentration of K+ ions specifically alleviated the growth defect of ftsE(Ts) cells but not cell division, and the cells elongated more than 100-fold. We conclude that one of the causes of growth cessation in the ftsE(Ts) mutants is a defect in the translocation of K+-pump proteins into the cytoplasmic membrane.

Links

PubMed PMC107337

Keywords

ATP-Binding Cassette Transporters; Bacterial Proteins/metabolism; Cell Division/drug effects; Cell Membrane/metabolism; Cell Membrane/physiology; Cystic Fibrosis Transmembrane Conductance Regulator/metabolism; Escherichia coli/growth & development; Escherichia coli/metabolism; Escherichia coli Proteins; Potassium Chloride/pharmacology; Sodium-Potassium-Exchanging ATPase/metabolism

Main Points of the Paper

Please summarize the main points of the paper.

Materials and Methods Used

Please list the materials and methods used in this paper (strains, plasmids, antibodies, etc).

Phenotype Annotations

See Help:AnnotationTable for details on how to edit this table.
<protect>

Phenotype of Taxon Information Genotype Information (if known) Condition Information OMP ID OMP Term Name ECO ID ECO Term Name Notes Status

</protect>

Notes

References

See Help:References for how to manage references in omp dev.