Difference between revisions of "PMID:15489430"

From omp dev
Jump to: navigation, search
(New PMID: Page!)
 
(Fill PMID: Page!)
Line 1: Line 1:
 +
{{RightTOC}}
  
 +
<!--box uid=2ccfb3c7bf1208312f02a69e64bfd9e0.353.L4d7e92f082509-->
 +
<!--
 +
******************************************************************************************
 +
*
 +
*  ** PLEASE DON'T EDIT THIS TABLE DIRECTLY.  Use the edit table link under the table. **
 +
*
 +
****************************************************************************************** -->
 +
{|  id="L4d7e92f082509"  class=" tableEdit PMID_info_table" 
 +
 +
|-
 +
!align=left  |Citation
 +
||
 +
'''Van Dyk, TK, Templeton, LJ, Cantera, KA, Sharpe, PL and Sariaslani, FS'''  (2004) Characterization of the Escherichia coli AaeAB efflux pump: a metabolic relief valve?''J. Bacteriol.'' '''186''':7196-204
 +
|-
 +
!align=left  |Abstract
 +
||
 +
Treatment of Escherichia coli with p-hydroxybenzoic acid (pHBA) resulted in upregulation of yhcP, encoding a protein of the putative efflux protein family. Also upregulated were the adjacent genes yhcQ, encoding a protein of the membrane fusion protein family, and yhcR, encoding a small protein without a known or suggested function. The function of the upstream, divergently transcribed gene yhcS, encoding a regulatory protein of the LysR family, in regulating expression of yhcRQP was shown. Furthermore, it was demonstrated that several aromatic carboxylic acid compounds serve as inducers of yhcRQP expression. The efflux function encoded by yhcP was proven by the hypersensitivity to pHBA of a yhcP mutant strain. A yhcS mutant strain was also hypersensitive to pHBA. Expression of yhcQ and yhcP was necessary and sufficient for suppression of the pHBA hypersensitivity of the yhcS mutant. Only a few aromatic carboxylic acids of hundreds of diverse compounds tested were defined as substrates of the YhcQP efflux pump. Thus, we propose renaming yhcS, yhcR, yhcQ, and yhcP, to reflect their role in aromatic carboxylic acid efflux, to aaeR, aaeX, aaeA, and aaeB, respectively. The role of pHBA in normal E. coli metabolism and the highly regulated expression of the AaeAB efflux system suggests that the physiological role may be as a "metabolic relief valve" to alleviate toxic effects of imbalanced metabolism.
 +
|-
 +
!align=left  |Links
 +
||
 +
[http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=15489430 PubMed]
 +
Online version:[http://dx.doi.org/10.1128/JB.186.21.7196-7204.2004 10.1128/JB.186.21.7196-7204.2004]
 +
|-
 +
!align=left  |Keywords
 +
||
 +
Biological Transport; Escherichia coli; Escherichia coli Proteins; Gene Expression Profiling; Gene Expression Regulation, Bacterial; Microbial Sensitivity Tests; Oligonucleotide Array Sequence Analysis; Operon; Parabens; Substrate Specificity
 +
 +
|- class="tableEdit_footer"
 +
|<span class="tableEdit_editLink plainlinks">[{{SERVER}}{{SCRIPTPATH}}?title=Special:TableEdit&id=2ccfb3c7bf1208312f02a69e64bfd9e0.353.L4d7e92f082509&page=353&pagename={{FULLPAGENAMEE}}&type=1&template=PMID_info_table edit table]</span> ||
 +
|}
 +
<!--box uid=2ccfb3c7bf1208312f02a69e64bfd9e0.353.L4d7e92f082509-->
 +
 +
==Main Points of the Paper ==
 +
{{LitSignificance}}
 +
 +
== Materials and Methods Used ==
 +
{{LitMaterials}}
 +
 +
==Phenotype Annotations==
 +
{{AnnotationTableHelp}}
 +
<protect><!--box uid=2ccfb3c7bf1208312f02a69e64bfd9e0.353.A4d7e92f0840f2-->
 +
<!--
 +
******************************************************************************************
 +
*
 +
*  ** PLEASE DON'T EDIT THIS TABLE DIRECTLY.  Use the edit table link under the table. **
 +
*
 +
****************************************************************************************** -->
 +
{|  id="A4d7e92f0840f2"  class=" tableEdit PMID_Phenotype_table" 
 +
|-
 +
!|Species!!Taxon ID!!Strain!!Gene (if known)!!OMP!!Phenotype!!Details!!Evidence!!Notes
 +
 +
|- class="tableEdit_footer"
 +
|<span class="tableEdit_editLink plainlinks">[{{SERVER}}{{SCRIPTPATH}}?title=Special:TableEdit&id=2ccfb3c7bf1208312f02a69e64bfd9e0.353.A4d7e92f0840f2&page=353&pagename={{FULLPAGENAMEE}}&type=0&template=PMID_Phenotype_table edit table]</span> || || || || || || || ||
 +
|}
 +
<!--box uid=2ccfb3c7bf1208312f02a69e64bfd9e0.353.A4d7e92f0840f2--></protect>
 +
 +
==Notes==
 +
 +
==References==
 +
{{RefHelp}}
 +
<references/>

Revision as of 17:13, 14 March 2011

Citation

Van Dyk, TK, Templeton, LJ, Cantera, KA, Sharpe, PL and Sariaslani, FS (2004) Characterization of the Escherichia coli AaeAB efflux pump: a metabolic relief valve?J. Bacteriol. 186:7196-204

Abstract

Treatment of Escherichia coli with p-hydroxybenzoic acid (pHBA) resulted in upregulation of yhcP, encoding a protein of the putative efflux protein family. Also upregulated were the adjacent genes yhcQ, encoding a protein of the membrane fusion protein family, and yhcR, encoding a small protein without a known or suggested function. The function of the upstream, divergently transcribed gene yhcS, encoding a regulatory protein of the LysR family, in regulating expression of yhcRQP was shown. Furthermore, it was demonstrated that several aromatic carboxylic acid compounds serve as inducers of yhcRQP expression. The efflux function encoded by yhcP was proven by the hypersensitivity to pHBA of a yhcP mutant strain. A yhcS mutant strain was also hypersensitive to pHBA. Expression of yhcQ and yhcP was necessary and sufficient for suppression of the pHBA hypersensitivity of the yhcS mutant. Only a few aromatic carboxylic acids of hundreds of diverse compounds tested were defined as substrates of the YhcQP efflux pump. Thus, we propose renaming yhcS, yhcR, yhcQ, and yhcP, to reflect their role in aromatic carboxylic acid efflux, to aaeR, aaeX, aaeA, and aaeB, respectively. The role of pHBA in normal E. coli metabolism and the highly regulated expression of the AaeAB efflux system suggests that the physiological role may be as a "metabolic relief valve" to alleviate toxic effects of imbalanced metabolism.

Links

PubMed Online version:10.1128/JB.186.21.7196-7204.2004

Keywords

Biological Transport; Escherichia coli; Escherichia coli Proteins; Gene Expression Profiling; Gene Expression Regulation, Bacterial; Microbial Sensitivity Tests; Oligonucleotide Array Sequence Analysis; Operon; Parabens; Substrate Specificity

Main Points of the Paper

Please summarize the main points of the paper.

Materials and Methods Used

Please list the materials and methods used in this paper (strains, plasmids, antibodies, etc).

Phenotype Annotations

See Help:AnnotationTable for details on how to edit this table.
<protect>

Species Taxon ID Strain Gene (if known) OMP Phenotype Details Evidence Notes

</protect>

Notes

References

See Help:References for how to manage references in omp dev.